Narrative Reviews

Anticoagulation in obese patients: challenges and strategies

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 18 September 2025
112
Views
20
Downloads

Authors

Obesity is a chronic complex disease, related to several comorbidities, including cardiovascular diseases, insulin resistance, and venous thromboembolism (VTE). Its rising prevalence, especially among individuals with extreme obesity, poses several management challenges, particularly with regard to anticoagulant therapy. The pharmacokinetics and pharmacodynamics of anticoagulants are altered in obese patients, requiring tailored therapeutic strategies. This review examines the challenges faced when managing anticoagulation in obese individuals, focusing on both parenteral and oral anticoagulants. Obesity influences drug absorption, distribution, metabolism, and elimination, complicating the use of both parenteral agents like low-molecular-weight heparin (LMWH), unfractionated heparin (UFH), and fondaparinux and oral agents, such as vitamin K antagonists (VKAs) and direct oral anticoagulants (DOACs). Oral anticoagulant administration represents a great challenge also in patients who undergo bariatric surgery, which further impacts on drug bioavailability by modifying gastrointestinal anatomy. In general, data on the efficacy and safety of DOACs in severely obese individuals, particularly those who have undergone bariatric surgery, remain limited. This review highlights the importance of individualized anticoagulation approaches, especially for high-risk patients, and highlights the need for further research to establish appropriate management strategies for the population of obese patients. Such studies are crucial to improve the safety and efficacy of anticoagulant therapy in this growing population.

Downloads

Download data is not yet available.

Citations

1. World Health Organization. Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
2. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol 2015;402:113-9. DOI: https://doi.org/10.1016/j.mce.2014.11.029
3. Garvey WT, Mechanick JI, Brett EM, et al. American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract 2016;22:1-203. DOI: https://doi.org/10.4158/EP161365.GL
4. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human. Diabetes 1988;37:1595-607. DOI: https://doi.org/10.2337/diabetes.37.12.1595
5. Defronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173-94. DOI: https://doi.org/10.2337/diacare.14.3.173
6. Lindsay RS, Howard BV. Cardiovascular risk associated with the metabolic syndrome. Curr Diab Rep 2004;4:63-8. DOI: https://doi.org/10.1007/s11892-004-0013-9
7. Koskinas KC, Van Craenenbroeck EM, Antoniades C, et al. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur Heart J 2024;45:4063-98. DOI: https://doi.org/10.1093/eurheartj/ehae508
8. Cote AT, Harris KC, Panagiotopoulos C, et al. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol 2013;62:1309-19. DOI: https://doi.org/10.1016/j.jacc.2013.07.042
9. Sanchez AA, Levy PT, Sekarski TJ, et al. Markers of cardiovascular risk, insulin resistance, and ventricular dysfunction and remodeling in obese adolescents. J Pediatr 2015;166:660-5. DOI: https://doi.org/10.1016/j.jpeds.2014.11.012
10. Garrison RJ, Kannel WB, Stokes Iii J, et al. Incidence and precursors of hypertension in young adults: the Framingham Offspring study. Prev Med 1987;16:235-51. DOI: https://doi.org/10.1016/0091-7435(87)90087-9
11. Van Gelder IC, Rienstra M, Bunting KV, et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2024;45:3314-414. DOI: https://doi.org/10.1093/eurheartj/ehae176
12. Kabrhel C, Varraso R, Goldhaber SZ, et al. Prospective study of BMI and the risk of pulmonary embolism in women. Obesity 2009;17:2040-6. DOI: https://doi.org/10.1038/oby.2009.92
13. Lutsey PL, Zakai NA. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol 2023;20:248-62. DOI: https://doi.org/10.1038/s41569-022-00787-6
14. Yang G, Staercke C De, Hooper WC. The effects of obesity on venous thromboembolism: A review. Open J Prev Med 2012;2:499-509. DOI: https://doi.org/10.4236/ojpm.2012.24069
15. Ntinopoulou P, Ntinopoulou E, Papathanasiou IV, et al. Obesity as a risk factor for venous thromboembolism recurrence: a systematic review. Medicina (Kaunas) 2022;58:1290. DOI: https://doi.org/10.3390/medicina58091290
16. Pati S, Irfan W, Jameel A, et al. Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers (Basel) 2023;15:485. DOI: https://doi.org/10.3390/cancers15020485
17. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Resp J 2019;54:1901647. DOI: https://doi.org/10.1183/13993003.01647-2019
18. Smit C, De Hoogd S, Brüggemann RJM, Knibbe CAJ. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol 2018;14:275-85. DOI: https://doi.org/10.1080/17425255.2018.1440287
19. Sanderink G, Le Liboux A, Jariwala N, et al. The pharmacokinetics and pharmacodynamics of enoxaparin in obese volunteers. Clin Pharmacol Ther 2002;72:308-18. DOI: https://doi.org/10.1067/mcp.2002.127114
20. Lim RB, Blackburn GL, Jones DB. Benchmarking best practices in weight loss surgery. Curr Probl Surg 2010;47:79-174. DOI: https://doi.org/10.1067/j.cpsurg.2009.11.003
21. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-yy levels after roux-en-y gastric bypass and sleeve gastrectomy a prospective, double blind study. Ann Surg 2008;247:401-7. DOI: https://doi.org/10.1097/SLA.0b013e318156f012
22. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 2004;240:236-42. DOI: https://doi.org/10.1097/01.sla.0000133117.12646.48
23. Martin K, Beyer-Westendorf J, Davidson BL, et al. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemost 2016;14:1308-13. DOI: https://doi.org/10.1111/jth.13323
24. Bland CM, Quidley AM, Love BL, et al. Long-term pharmacotherapy considerations in the bariatric surgery patient. Am J Health Syst Pharm 2016;73:1230-42. DOI: https://doi.org/10.2146/ajhp151062
25. Martin KA, Lee CR, Farrell TM, Moll S. Oral anticoagulant use after bariatric surgery: a literature review and clinical guidance. Am J Med 2017;130:517-24. DOI: https://doi.org/10.1016/j.amjmed.2016.12.033
26. English WJ, DeMaria EJ, Hutter MM, et al. American Society for Metabolic and Bariatric Surgery 2018 estimate of metabolic and bariatric procedures performed in the United States. Surg Obes Relat Dis 2020;16:457-63. DOI: https://doi.org/10.1016/j.soard.2019.12.022
27. Steffen KJ, Wonderlich JA, Erickson AL, et al. Comparison of warfarin dosages and international normalized ratios before and after Roux-en-Y gastric bypass surgery. Pharmacotherapy 2015;35:876-80. DOI: https://doi.org/10.1002/phar.1632
28. Kushnir M, Gali R, Alexander M, Billett HH. Direct oral Xa inhibitors for the treatment of venous thromboembolism after bariatric surgery. Blood Adv 2023;7:224-6. DOI: https://doi.org/10.1182/bloodadvances.2021006696
29. Abed HS, Samuel CS, Lau DH, et al. Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation. Heart Rhythm 2013;10:90-100. DOI: https://doi.org/10.1016/j.hrthm.2012.08.043
30. Balla SR, Cyr DD, Lokhnygina Y, et al. Relation of risk of stroke in patients with atrial fibrillation to body mass index (from patients treated with rivaroxaban and warfarin in the rivaroxaban once daily oral direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation trial). Am J Cardiol 2017;119:1989-96. DOI: https://doi.org/10.1016/j.amjcard.2017.03.028
31. Boriani G, Ruff CT, Kuder JF, et al. Relationship between body mass index and outcomes in patients with atrial fibrillation treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. Eur Heart J 2019;40:1541-49. DOI: https://doi.org/10.1093/eurheartj/ehy861
32. Hohnloser SH, Fudim M, Alexander JH, et al. Efficacy and safety of apixaban versus warfarin in patients with atrial fibrillation and extremes in body weight: insights from the Aristotle trial. Circulation 2019;139:2292-300. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.037955
33. Malik AH, Yandrapalli S, Shetty S, et al. Impact of weight on the efficacy and safety of direct-acting oral anticoagulants in patients with non-valvular atrial fibrillation: A meta-analysis. Europace 2020;22:361-7. DOI: https://doi.org/10.1093/europace/euz361
34. Barakat AF, Jain S, Masri A, et al. Outcomes of direct oral anticoagulants in atrial fibrillation patients across different body mass index categories. JACC Clin Electrophysiol 2021;7:649-58. DOI: https://doi.org/10.1016/j.jacep.2021.02.002
35. Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024;149:E1-E156. DOI: https://doi.org/10.1161/CIR.0000000000001207
36. Martin KA, Beyer-Westendorf J, Davidson BL, et al. Use of direct oral anticoagulants in patients with obesity for treatment and prevention of venous thromboembolism: Updated communication from the ISTH SSC Subcommittee on Control of Anticoagulation. J Thromb Haemost 2021;19:1874-82. DOI: https://doi.org/10.1111/jth.15358
37. Kushnir M, Choi Y, Eisenberg R, et al. Efficacy and safety of direct oral factor Xa inhibitors compared with warfarin in patients with morbid obesity: a single-centre, retrospective analysis of chart data. Lancet Haematol 2019;6:e359-65. DOI: https://doi.org/10.1016/S2352-3026(19)30086-9
38. Cohen A, Sah J, Lee T, et al. Effectiveness and safety of apixaban vs. Warfarin in venous thromboembolism patients with obesity and morbid obesity. J Clin Med 2021;10:1-11. DOI: https://doi.org/10.1093/eurheartj/ehab724.1940
39. Wasan SM, Feland N, Grant R, Aston CE. Validation of apixaban anti-factor Xa assay and impact of body weight. Thromb Res 2019;182:51-55. DOI: https://doi.org/10.1016/j.thromres.2019.08.014
40. Upreti VV, Wang J, Barrett YC, et al. Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects. Br J Clin Pharmacol 2013;76:908-16. DOI: https://doi.org/10.1111/bcp.12114
41. Martin AC, Thomas W, Mahir Z, et al. Direct oral anticoagulant concentrations in obese and high body weight patients: a cohort study. Thromb Haemost 2021;121:224-33. DOI: https://doi.org/10.1055/s-0040-1715834
42. Zhao Y, Guo M, Li D, et al. Pharmacokinetics and dosing regimens of direct oral anticoagulants in morbidly obese patients: an updated literature review. Clin Appl Thromb Hemost 2023;29. DOI: https://doi.org/10.1177/10760296231153638
43. Steffel J, Collins R, Antz M, et al. 2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace 2021;23:1612-76. DOI: https://doi.org/10.1093/europace/euab157
44. Di Nisio M, Vedovati MC, Riera-Mestre A, et al. Treatment of venous thromboembolism with rivaroxaban in relation to body weight: A sub-analysis of the EINSTEIN DVT/PE studies. Thromb Haemost 2016;116:739-46. DOI: https://doi.org/10.1160/TH16-02-0087
45. Costa OS, Beyer-Westendorf J, Ashton V, et al. Effectiveness and safety of rivaroxaban versus warfarin in obese patients with acute venous thromboembolism: analysis of electronic health record data. J Thromb Thrombolysis 2021;51:349-58. DOI: https://doi.org/10.1007/s11239-020-02199-0
46. Perales IJ, San Agustin K, DeAngelo J, Campbell AM. Rivaroxaban versus warfarin for stroke prevention and venous thromboembolism treatment in extreme obesity and high body weight. Ann Pharmacother 2020;54:344-50. DOI: https://doi.org/10.1177/1060028019886092
47. Spyropoulos AC, Ashton V, Chen YW, et al. Rivaroxaban versus warfarin treatment among morbidly obese patients with venous thromboembolism: Comparative effectiveness, safety, and costs. Thromb Res 2019;182:159-66. DOI: https://doi.org/10.1016/j.thromres.2019.08.021
48. Kubitza D, Becka M, Zuehlsdorf M, Mueck W. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J Clin Pharmacol 2007;47:218-26. DOI: https://doi.org/10.1177/0091270006296058
49. Arachchillage DRJ, Reynolds R, Devey T, et al. Effect of extremes of body weight on drug level in patient treated with standard dose of rivaroxaban for venous thromboembolism; real life experience. Thromb Res 2016;147:32-5. DOI: https://doi.org/10.1016/j.thromres.2016.09.010
50. Mueck W, Lensing AWA, Agnelli G, et al. Rivaroxaban population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention. Clin Pharmacokinet 2011;50:675-86. DOI: https://doi.org/10.2165/11595320-000000000-00000
51. Reilly PA, Lehr T, Haertter S, et al. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY trial (Randomized Evaluation of Long-Term Anticoagulation Therapy). J Am Coll Cardiol 2014;63:321-8. DOI: https://doi.org/10.1016/j.jacc.2013.07.104
52. Piran S, Traquair H, Chan N, et al. Peak plasma concentration of direct oral anticoagulants in obese patients weighing over 120 kilograms: A retrospective study. Res Pract Thromb Haemost 2018;2:684-8. DOI: https://doi.org/10.1002/rth2.12146
53. Huang CW, Duan L, An J, et al. Effectiveness and safety of dabigatran in atrial fibrillation patients with severe obesity: a real-world retrospective cohort study. J Gen Intern Med 2022;37:2982-90. DOI: https://doi.org/10.1007/s11606-021-07114-8
54. Coates J, Bitton E, Hendje A, et al. Clinical outcomes of dabigatran use in patients with non-valvular atrial fibrillation and weight >120 Kg. Thromb Res 2021;208:176-80. DOI: https://doi.org/10.1016/j.thromres.2021.11.007
55. Briasoulis A, Mentias A, Mazur A, et al. Comparative effectiveness and safety of direct oral anticoagulants in obese patients with atrial fibrillation. Cardiovasc Drugs Ther 2021;35:261-72. DOI: https://doi.org/10.1007/s10557-020-07126-2
56. Menichelli D, Pannunzio A, Baldacci E, et al. Plasma concentrations of direct oral anticoagulants in patients with nonvalvular atrial fibrillation and different degrees of obesity. Clin Pharmacokinet 2025;64:453-62. DOI: https://doi.org/10.1007/s40262-025-01474-8
57. Palareti G, Testa S, Legnani C, et al. More early bleeds associated with high baseline direct oral anticoagulant levels in atrial fibrillation: the MAS study. Blood Adv 2024;8:4913-23. DOI: https://doi.org/10.1182/bloodadvances.2024013126
58. Testa S, Palareti G, Legnani C, et al. Thrombotic events associated with low baseline direct oral anticoagulant levels in atrial fibrillation: the MAS study. Blood Adv 2024;8:1846-56. DOI: https://doi.org/10.1182/bloodadvances.2023012408
59. Kröll D, Stirnimann G, Vogt A, et al. Pharmacokinetics and pharmacodynamics of single doses of rivaroxaban in obese patients prior to and after bariatric surgery. Br J Clin Pharmacol 2017;83:1466-75. DOI: https://doi.org/10.1111/bcp.13243
60. Rottenstreich A, Barkai A, Arad A, et al. The effect of bariatric surgery on direct-acting oral anticoagulant drug levels. Thromb Res 2018;163:190-5. DOI: https://doi.org/10.1016/j.thromres.2017.11.006
61. Wijelath E, Namekata M, Murray J, et al. Multiple mechanisms for exogenous heparin modulation of vascular endothelial growth factor activity. J Cell Biochem 2010;111:461-8. DOI: https://doi.org/10.1002/jcb.22727
62. Liu J, Li J, Arnold K, Pawlinski R, Key NS. Using heparin molecules to manage COVID-2019. Res Pract Thromb Haemost 2020;4:518-23. DOI: https://doi.org/10.1002/rth2.12353
63. Baglin T, Barrowcliffe TW, Cohen A, Greaves M. Guidelines on the use and monitoring of heparin. Br J Haematol 2006;133:19-34. DOI: https://doi.org/10.1111/j.1365-2141.2005.05953.x
64. Perry DJ. Antithrombin and its inherited deficiencies. Blood Rev 1994;8:35-55. DOI: https://doi.org/10.1016/0268-960X(94)90006-X
65. Hirsh J, Guyatt G, Albers GW, et al. Antithrombotic and thrombolytic therapy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008;133:110S-12S. DOI: https://doi.org/10.1378/chest.08-0652
66. Prandoni P. Heparins and venous thromboembolism: current practice and future directions. Thromb Haemost 2001;86:488-98. DOI: https://doi.org/10.1055/s-0037-1616246
67. US Food and Drug Administration. FDA drug package insert information for enoxaparin sodium injection for subcutaneous and intravenous use. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020164s129lbl.pdf
68. Kongsawat K, Chaivanijchaya K, Pakul F, et al. Comparison of enoxaparin 40 mg versus 60 mg dosage for venous thromboprophylaxis in patients undergoing bariatric surgery: A randomized controlled trial. Asian J Surg 2024;47:2985-90. DOI: https://doi.org/10.1016/j.asjsur.2024.02.095
69. van Oosterom N, Winckel K, Barras M. Evaluation of weight based enoxaparin dosing on anti-Xa concentrations in patients with obesity. J Thromb Thrombolysis 2019;48:387-3. DOI: https://doi.org/10.1007/s11239-019-01847-4
70. John S, Wilkinson M, Ho KM. Monitoring anti-Xa levels to optimize low-molecular-weight-heparin thromboprophylaxis in high-risk hospitalized patients: a stratified meta-analysis. Angiology 2024;75:249-66. DOI: https://doi.org/10.1177/00033197221150673
71. Garcia DA, Baglin TP, Weitz JI, Samama MM. Parenteral anticoagulants - Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2012;141:e24S-e43S. DOI: https://doi.org/10.1378/chest.11-2291
72. Schünemann HJ, Cushman M, Burnett AE, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv 2018;2:3198-225. DOI: https://doi.org/10.1182/bloodadvances.2018022954
73. Anderson DR, Morgano GP, Bennett C, et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv 2019;3:3898-44. DOI: https://doi.org/10.1182/bloodadvances.2019000975
74. Ceccato D, Di Vincenzo A, Pagano C, et al. Weight-adjusted versus fixed dose heparin thromboprophylaxis in hospitalized obese patients: A systematic review and meta-analysis. Eur J Intern Med 2021;88:73-80. DOI: https://doi.org/10.1016/j.ejim.2021.03.030
75. Nutescu EA, Spinler SA, Wittkowsky A, Dager WE. Low-molecular-weight heparins in renal impairment and obesity: Available evidence and clinical practice recommendations across medical and surgical settings. Ann Pharmacother 2009;43:1064-83. DOI: https://doi.org/10.1345/aph.1L194
76. Rondina MT, Wheeler M, Rodgers GM, et al. Weight-based dosing of enoxaparin for VTE prophylaxis in morbidly obese, medically-Ill patients. Thromb Res 2010;125:220-3. DOI: https://doi.org/10.1016/j.thromres.2009.02.003
77. Freeman A, Horner T, Pendleton RC, Rondina MT. Prospective comparison of three enoxaparin dosing regimens to achieve target anti-factor Xa levels in hospitalized, medically ill patients with extreme obesity. Am J Hematol 2012;87:740-3. DOI: https://doi.org/10.1002/ajh.23228
78. Parikh S, Jakeman B, Walsh E, et al. Adjusted-dose enoxaparin for VTE prevention in the morbidly obese. J Pharm Technol 2015;31:282-8. DOI: https://doi.org/10.1177/8755122515593381
79. Bickford A, Majercik S, Bledsoe J, et al. Weight-based enoxaparin dosing for venous thromboembolism prophylaxis in the obese trauma patient. Am J Surg. 2013;206:847-52. DOI: https://doi.org/10.1016/j.amjsurg.2013.07.020
80. Scholten DJ, Hoedema RM, Scholten SE. A comparison of two different prophylactic dose regimens of low molecular weight heparin in bariatric surgery. Obes Surg 2002;12:19-24. DOI: https://doi.org/10.1381/096089202321144522
81. Borkgren-Okonek MJ, Hart RW, Pantano JE, et al. Enoxaparin thromboprophylaxis in gastric bypass patients: extended duration, dose stratification, and antifactor Xa activity. Surg Obes Relat Dis 2008;4:625-31. DOI: https://doi.org/10.1016/j.soard.2007.11.010
82. Governement of Canada. Tinzaparin sodium injection. Revised May 2017. Accessed: 15 October 2024. Available from: https://pdf.hres.ca/dpd_pm/00080939.PDF
83. Sebaaly J, Covert K. Enoxaparin dosing at extremes of weight: literature review and dosing recommendations. Ann Pharmacother 2018;52:898-909. DOI: https://doi.org/10.1177/1060028018768449
84. Turpie AG, Gallus AS, Hoek JA. A synthetic pentasaccharide for the prevention of deep-vein thrombosis after total hip replacement. N Engl J Med 2001;344:619-25. DOI: https://doi.org/10.1056/NEJM200103013440901
85. Lassen MR, Bauer KA, Eriksson BI, et al. Postoperative fondaparinux versus preoperative enoxaparin for prevention of venous thromboembolism in elective hip-replacement surgery: a randomised double-blind comparison. Lancet 2002;359:1715-20. DOI: https://doi.org/10.1016/S0140-6736(02)08652-X
86. Bauer KA. Fondaparinux sodium: a selective inhibitor of factor Xa. Am J Health Syst Pharm 2001;58:S14-7. DOI: https://doi.org/10.1093/ajhp/58.suppl_2.S14
87. Savi P, Chong BH, Greinacher A, et al. Effect of fondaparinux on platelet activation in the presence of heparin-dependent antibodies: A blinded comparative multicenter study with unfractionated heparin. Blood 2005;105:139-44. DOI: https://doi.org/10.1182/blood-2004-05-2010

How to Cite



1.
Lipari A, Capristo E, Ferretti A, De Candia E. Anticoagulation in obese patients: challenges and strategies. Bleeding Thromb Vascul Biol [Internet]. 2025 Sep. 18 [cited 2025 Sep. 24];4(3). Available from: https://www.btvb.org/btvb/article/view/174

Similar Articles

11-20 of 69

You may also start an advanced similarity search for this article.