Addressing some challenges of congenital fibrinogen disorders in 2023 and beyond

Submitted: 22 March 2023
Accepted: 21 June 2023
Published: 3 August 2023
Abstract Views: 912
PDF: 194
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Congenital fibrinogen disorders (CFD) include several types and subtypes of fibrinogen deficiency, resulting from monoallelic or biallelic mutations in one of the three fibrinogen genes. While it is relatively easy to make an accurate diagnosis based on activity and antigen levels of fibrinogen and genotype, prediction of the clinical phenotype is challenging. Even among patients with the same genotype, the clinical features are heterogeneous and unpredictable. The development of next-generation sequencing rises the possibility to integrate genetic modifiers to explain the subtle relationship between genotype and clinical phenotype. A recent development in integrative hemostasis assays can also help in the determination of patients at risk of bleeding or thrombosis. In this short review, we go through these topics and explain why CFD could be considered an oligogenic rather than a monogenic disease.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Plaudit

Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015;125:2052-61. DOI: https://doi.org/10.1182/blood-2014-08-532820
Luo M, Xiang L, Yan J, et al. Fibrinogen Clauss and prothrombin time derived method ratio can differentiate dysfibrinogenemia from hypofibrinogenemia and hyperfibrinogenemia. Thromb Res 2020;194:197-9. DOI: https://doi.org/10.1016/j.thromres.2020.07.023
Casini A, Undas A, Palla R, et al. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018;16:1887-90. DOI: https://doi.org/10.1111/jth.14216
Rabe F, Saloman E. Ueber-faserstoffmangel im blute bei einem falle von hemophilie. Arch Intern Med 1920:2-14.
Imperato C, Dettori AG. Congenital hypofibrinogenemia with fibrinoasthenia. Helv Paediatr Acta 1958;13:380-99.
Casini A, Moerloose P, Neerman-Arbez M. One Hundred Years of Congenital Fibrinogen Disorders. Semin Thromb Hemost 2022;48:880-8. DOI: https://doi.org/10.1055/s-0042-1756187
Margaglione M, Vecchione G, Santacroce R, et al. A frameshift mutation in the human fibrinogen Aalpha-chain gene (Aalpha(499)Ala frameshift stop) leading to dysfibrinogen San Giovanni Rotondo. Thromb Haemost 2001;86:1483-8. DOI: https://doi.org/10.1055/s-0037-1616752
Asselta R, Plate M, Robusto M, et al. Clinical and molecular characterisation of 21 patients affected by quantitative fibrinogen deficiency. Thromb Haemost 2015;113:567-76. DOI: https://doi.org/10.1160/TH14-07-0629
Brennan SO, Maghzal G, Shneider BL, et al. Novel fibrinogen gamma375 Arg-->Trp mutation (fibrinogen aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology 2002;36:652-8. DOI: https://doi.org/10.1053/jhep.2002.35063
Brennan SO, Davis RL, Conard K, et al. Novel fibrinogen mutation gamma314Thr-->Pro (fibrinogen AI duPont) associated with hepatic fibrinogen storage disease and hypofibrinogenaemia. Liver Int 2010;30:1541-7. DOI: https://doi.org/10.1111/j.1478-3231.2010.02312.x
Dib N, Quelin F, Ternisien C, et al. Fibrinogen angers with a new deletion (gamma GVYYQ 346-350) causes hypofibrinogenemia with hepatic storage. J Thromb Haemost 2007;5:1999-2005. DOI: https://doi.org/10.1111/j.1538-7836.2007.02713.x
Callea F, Giovannoni I, Sari S, et al. Fibrinogen Gamma Chain Mutations Provoke Fibrinogen and Apolipoprotein B Plasma Deficiency and Liver Storage. Int J Mol Sci 2017;18. DOI: https://doi.org/10.3390/ijms18122717
Asselta R, Robusto M, Braidotti P, et al. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen gamma-module. J Thromb Haemost 2015;13:1459-67. DOI: https://doi.org/10.1111/jth.13021
Brennan SO, Wyatt J, Medicina D, et al. Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly-->Arg mutation. Am J Pathol 2000;157:189-96. DOI: https://doi.org/10.1016/S0002-9440(10)64530-0
Burcu G, Bellacchio E, Sag E, et al. Structural Characteristics in the gamma Chain Variants Associated with Fibrinogen Storage Disease Suggest the Underlying Pathogenic Mechanism. Int J Mol Sci 2020;21. DOI: https://doi.org/10.3390/ijms21145139
Marchi R, Lundberg U, Grimbergen J, et al. Fibrinogen Caracas V, an abnormal fibrinogen with an Aalpha 532 Ser-->Cys substitution associated with thrombosis. Thromb Haemost 2000;84:263-70. DOI: https://doi.org/10.1055/s-0037-1614006
Koopman J, Haverkate F, Grimbergen J, et al. Molecular basis for fibrinogen Dusart (A alpha 554 Arg-->Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest 1993;91:1637-43. DOI: https://doi.org/10.1172/JCI116371
Koopman J, Haverkate F, Grimbergen J, et al. Abnormal fibrinogens IJmuiden (B beta Arg14----Cys) and Nijmegen (B beta Arg44----Cys) form disulfide-linked fibrinogen-albumin complexes. Proc Natl Acad Sci U S A 1992;89:3478-82. DOI: https://doi.org/10.1073/pnas.89.8.3478
Bentolila S, Samama MM, Conard J, et al. [Association of dysfibrinogenemia and thrombosis. Apropos of a family (Fibrinogen Melun) and review of the literature]. Ann Med Interne (Paris) 1995;146:575-80.
Koopman J, Haverkate F, Lord ST, et al. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. Homozygous substitution of B beta 68 Ala----Thr. J Clin Invest 1992;90:238-44. DOI: https://doi.org/10.1172/JCI115841
Al-Mondhiry H, Bilezikian SB, Nossel HL. Fibrinogen "New York"--an abnormal fibrinogen associated with thromboembolism: functional evaluation. Blood 1975;45:607-19. DOI: https://doi.org/10.1182/blood.V45.5.607.607
Engesser L, Koopman J, de Munk G, et al. Fibrinogen Nijmegen: congenital dysfibrinogenemia associated with impaired t-PA mediated plasminogen activation and decreased binding of t-PA. Thromb Haemost 1988;60:113-20. DOI: https://doi.org/10.1055/s-0038-1647646
Asselta R, Paraboschi EM, Duga S. Hereditary Hypofibrinogenemia with Hepatic Storage. Int J Mol Sci 2020;21. DOI: https://doi.org/10.3390/ijms21217830
Casini A, Neerman-Arbez M, Ariens RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015;13:909-19. DOI: https://doi.org/10.1111/jth.12916
Li Y, Ding B, Wang X, Ding Q. Congenital (hypo-)dysfibrinogenemia and bleeding: A systematic literature review. Thromb Res 2022;217:36-47. DOI: https://doi.org/10.1016/j.thromres.2022.07.005
Casini A, Blondon M, Lebreton A, et al. Natural history of patients with congenital dysfibrinogenemia. Blood 2015;125:553-61. DOI: https://doi.org/10.1182/blood-2014-06-582866
Castaman G, Giacomelli SH, Biasoli C, et al. Risk of bleeding and thrombosis in inherited qualitative fibrinogen disorders. Eur J Haematol 2019;103:379-84. DOI: https://doi.org/10.1111/ejh.13296
Zhou J, Ding Q, Chen Y, et al. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells Mol Dis 2015;55:308-15. DOI: https://doi.org/10.1016/j.bcmd.2015.06.002
Simurda T, Zolkova J, Kolkova Z, et al. Comparison of clinical phenotype with genetic and laboratory results in 31 patients with congenital dysfibrinogenemia in northern Slovakia. Int J Hematol 2020;111:795-802. DOI: https://doi.org/10.1007/s12185-020-02842-9
Wypasek E, Klukowska A, Zdziarska J, et al. Genetic and clinical characterization of congenital fibrinogen disorders in Polish patients: Identification of three novel fibrinogen gamma chain mutations. Thromb Res 2019;182:133-40. DOI: https://doi.org/10.1016/j.thromres.2019.08.012
Casini A, von Mackensen S, Santoro C, et al. Clinical phenotype, fibrinogen supplementation, and health-related quality of life in patients with afibrinogenemia. Blood 2021;137:3127-36. DOI: https://doi.org/10.1182/blood.2020009472
Casini A, Neerman-Arbez M, de Moerloose P. Heterogeneity of congenital afibrinogenemia, from epidemiology to clinical consequences and management. Blood Rev 2021;48:100793. DOI: https://doi.org/10.1016/j.blre.2020.100793
Santacroce R, Cappucci F, Pisanelli D, et al. Inherited abnormalities of fibrinogen: 10-year clinical experience of an Italian group. Blood Coagul Fibrinolysis 2006;17:235-40. DOI: https://doi.org/10.1097/01.mbc.0000224841.48463.be
Peyvandi F, Palla R, Menegatti M, et al. Coagulation factor activity and clinical bleeding severity in rare bleeding disorders: results from the European Network of Rare Bleeding Disorders. J Thromb Haemost 2012;10:615-21. DOI: https://doi.org/10.1111/j.1538-7836.2012.04653.x
Couzens A, Lebreton A, Masclaux F, et al. Hemizygous FGG p.Ala108Gly in a hypofibrinogenemic patient with a heterozygous 14.8 Mb deletion encompassing the entire fibrinogen gene cluster. Haemophilia 2022;28:e132-e5. DOI: https://doi.org/10.1111/hae.14621
Bor MV, Feddersen S, Pedersen IS, et al. Dysfibrinogenemia-Potential Impact of Genotype on Thrombosis or Bleeding. Semin Thromb Hemost 2022;48:161-73. DOI: https://doi.org/10.1055/s-0041-1730358
Guipponi M, Masclaux F, Sloan-Bena F, et al. A homozygous duplication of the FGG exon 8-intron 8 junction causes congenital afibrinogenemia. Lessons learned from the study of a large consanguineous Turkish family. Haematologica 2022;107:1064-71. DOI: https://doi.org/10.3324/haematol.2021.278945
Ariens RA, Philippou H, Nagaswami C, et al. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000;96:988-95. DOI: https://doi.org/10.1182/blood.V96.3.988.015k57_988_995
Ajjan R, Lim BC, Standeven KF, et al. Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood 2008;111:643-50. DOI: https://doi.org/10.1182/blood-2007-05-091231
Carter AM, Catto AJ, Kohler HP, et al. alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 2000;96:1177-9. DOI: https://doi.org/10.1182/blood.V96.3.1177.015k25_1177_1179
Khayat C, Marchi R, Durual S, et al. Impact of Fibrinogen Infusion on Thrombin Generation and Fibrin Clot Structure in Patients with Inherited Afibrinogenemia. Thromb Haemost 2022;122:1461-8. DOI: https://doi.org/10.1055/a-1745-0420
Szanto T, Lassila R, Lemponen M, et al. Whole Blood Thromboelastometry by ROTEM and Thrombin Generation by Genesia According to the Genotype and Clinical Phenotype in Congenital Fibrinogen Disorders. Int J Mol Sci 2021;22. DOI: https://doi.org/10.3390/ijms22052286
Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev 2007;21:131-42. DOI: https://doi.org/10.1016/j.blre.2006.11.001
Simpson ML, Goldenberg NA, Jacobson LJ, et al. Simultaneous thrombin and plasmin generation capacities in normal and abnormal states of coagulation and fibrinolysis in children and adults. Thromb Res 2011;127:317-23. DOI: https://doi.org/10.1016/j.thromres.2010.12.011
Zabczyk M, Ariens RAS, Undas A. Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Cardiovasc Res 2023;119:94-111. DOI: https://doi.org/10.1093/cvr/cvad017
Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood 2013;121:1712-9. DOI: https://doi.org/10.1182/blood-2012-09-306639
Undas A. How to Assess Fibrinogen Levels and Fibrin Clot Properties in Clinical Practice? Semin Thromb Hemost 2016;42:381-8. DOI: https://doi.org/10.1055/s-0036-1579636
Marchi R, Vilar R, Durual S, et al. Fibrin clot properties to assess the bleeding phenotype in unrelated patients with hypodysfibrinogenemia due to novel fibrinogen mutations. Thromb Res 2021;197:56-64. DOI: https://doi.org/10.1016/j.thromres.2020.11.003
Collet JP, Woodhead JL, Soria J, et al. Fibrinogen Dusart: electron microscopy of molecules, fibers and clots, and viscoelastic properties of clots. Biophys J 1996;70:500-10. DOI: https://doi.org/10.1016/S0006-3495(96)79596-6
Casini A, Duval C, Pan X, et al. Fibrin clot structure in patients with congenital dysfibrinogenaemia. Thromb Res 2016;137:189-95. DOI: https://doi.org/10.1016/j.thromres.2015.11.008

How to Cite

Santoro, C., & Casini, A. (2023). Addressing some challenges of congenital fibrinogen disorders in 2023 and beyond. Bleeding, Thrombosis and Vascular Biology, 2(3). https://doi.org/10.4081/btvb.2023.75