Reviews
30 June 2025

The subtle red line between combating and resolving inflammation in the cardiovascular disease, a “silent sniper”

https://BioRender.com/zrlk3rh
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
209
Views
80
Downloads

Authors

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Despite advancements in medical interventions, the burden of CVD continues to rise due to aging populations, lifestyle factors, and socio-economic disparities. Chronic inflammation plays a pivotal role in CVD pathogenesis, particularly in atherosclerosis, where macrophage polarization influences disease progression. Pharmacological strategies targeting lipid metabolism have evolved beyond statins to include novel therapeutics, such as PCSK9 inhibitors, ezetimibe, and bempedoic acid, offering alternative solutions for statin-intolerant individuals. Precision medicine in CVD harnesses genetic and omics data to personalize risk assessment, guide therapy, and improve outcomes, particularly through targeting genetic variants, inflammation, and clonal haematopoiesis. Additionally, gene-editing technologies, like CRISPR-Cas9, hold promise for addressing genetic contributors to CVD by modulating key regulatory targets, such as PCSK9 and ANGPTL3, potentially providing long-term solutions to hyperlipidaemia. Recent evidence suggests that glucose-lowering medications, including SGLT2 inhibitors and GLP-1 receptor agonists, confer cardiovascular benefits beyond glycaemic control by reducing inflammation, improving endothelial function, and promoting macrophage phenotype switching. Emerging therapies, such as GLP-1/GIP dual agonists, may offer superior cardioprotective effects, but further clinical trials are required to validate their efficacy in CVD. Anti-inflammatory treatments, including IL-1β inhibitors, colchicine, and statins, have demonstrated efficacy in reducing cardiovascular events. However, their broad immunosuppressive effects present challenges. Resolution pharmacology, focusing on specialized pro-resolving lipid mediators (SPMs), represents a novel therapeutic approach aimed at restoring immune balance, in lieu of merely suppressing inflammation. Understanding macrophage-driven inflammation in CVD could revolutionize treatment paradigms, shifting toward targeted interventions that resolve, rather than inhibit, inflammatory processes. Overall, integrating lipid-lowering therapies, gene editing, glucose-modulating drugs, and inflammation-resolution strategies offers a multi-faceted approach to mitigating CVD risk and improving long-term patient outcomes.

Altmetrics

Downloads

Download data is not yet available.

Citations

1. Mensah GA, Roth GA, Fuster V. The Global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol 2019;74:2529-32. DOI: https://doi.org/10.1016/j.jacc.2019.10.009
2. Timmis A, Aboyans V, Varda P, et al. European Society of Cardiology: the 2023 atlas of cardiovascular disease statistics. Eur Heart J 2024;45:4019-62. DOI: https://doi.org/10.1093/eurheartj/ehae466
3. World Health Organization. Cardiovascular diseases (CVDs). 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
4. Centers for Disease and Control. Heart disease risk factors. 2024. Available from: https://www.cdc.gov/heart-disease/risk-factors/index.html
5. Aday AW, Ridker PM. Antiinflammatory therapy in clinical care: the CANTOS trial and beyond. Front Cardiovasc Med 2018;5:62. DOI: https://doi.org/10.3389/fcvm.2018.00062
6. Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 2019;380:752-62. DOI: https://doi.org/10.1056/NEJMoa1809798
7. Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. ClinTher 2014;36:1465-79. DOI: https://doi.org/10.1016/j.clinthera.2014.07.017
8. Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019;381:2497-505. DOI: https://doi.org/10.1056/NEJMoa1912388
9. Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med 2020;383:1838-47. DOI: https://doi.org/10.1056/NEJMoa2021372
10. Nidorf SM, Ben-Chetrit E, Ridker PM. Low-dose colchicine for atherosclerosis: long-term safety. Eur Heart J 2024;45:1596-601. DOI: https://doi.org/10.1093/eurheartj/ehae208
11. Julliard WA, Myo YPA, Perelas A, et al., Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022;59:101605. DOI: https://doi.org/10.1016/j.smim.2022.101605
12. Chen S, Saeed AFUH, Liu Q, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023;8:207. DOI: https://doi.org/10.1038/s41392-023-01452-1
13. Mantovani A, Garlanda C, Locati M. Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol 2009;29:1419-23. DOI: https://doi.org/10.1161/ATVBAHA.108.180497
14. Wu J, He S, Song Z, et al. Macrophage polarization states in atherosclerosis. Front Immunol 2023;14:1185587. DOI: https://doi.org/10.3389/fimmu.2023.1185587
15. Catapano AL, Graham I, De Backer G, et al., 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 2016;37:2999-3058. DOI: https://doi.org/10.1093/eurheartj/ehw272
16. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000;101:207-13. DOI: https://doi.org/10.1161/01.CIR.101.2.207
17. Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis 2014;24:1057-66. DOI: https://doi.org/10.1016/j.numecd.2014.05.009
18. Garcia-Calvo M, Lisnock JM, Bull HG, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 2005;102:8132-7. DOI: https://doi.org/10.1073/pnas.0500269102
19. Sizar O, Nassereddin A, Talati R. Ezetimibe. Treasure Island, StatPearls Publishing,; 2025.
20. Torimoto K, Okada Y, Mori H, et al. Efficacy of combination of ezetimibe 10 mg and rosuvastatin 2.5 mg versus rosuvastatin 5 mg monotherapy for hypercholesterolemia in patients with type 2 diabetes. Lipids Health Dis 2013;12:137. DOI: https://doi.org/10.1186/1476-511X-12-137
21. Arabi SM, Chamabri M, Malek-Ahmadi, et al. The effect of statin therapy in combination with ezetimibe on circulating C-reactive protein levels: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2022;30:1597-615. DOI: https://doi.org/10.1007/s10787-022-01053-4
22. Bilen O, Ballantyne CM. Bempedoic acid (ETC-1002): an investigational inhibitor of ATP citrate lyase. Curr Atheroscler Rep 2016;8:61. DOI: https://doi.org/10.1007/s11883-016-0611-4
23. Ray KK, Bays HE, Catapano AL, et al., Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med 2019;380:1022-32. DOI: https://doi.org/10.1056/NEJMoa1803917
24. Ballantyne CM, Banach M, Mancini GBJ, et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: a randomized, placebo-controlled study. Atherosclerosis 2018;277:195-203. DOI: https://doi.org/10.1016/j.atherosclerosis.2018.06.002
25. Kulshreshtha M. An update on new cholesterol inhibitor: bempedoic acid. Current Cardiol Rev 2022;18:2-5. DOI: https://doi.org/10.2174/1573403X17666211214111658
26. Page MM, Watts GF. PCSK9 inhibitors - mechanisms of action. Aust Prescr 2016;39:164-7. DOI: https://doi.org/10.18773/austprescr.2016.060
27. Kim BK, Hong SJ, Lee YJ, et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): a randomised, open-label, non-inferiority trial. Lancet 2022;400:380390. DOI: https://doi.org/10.1016/S0140-6736(22)00916-3
28. Moriarty PM, Thompson PD, Cannon CP, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 2015;9:758-69. DOI: https://doi.org/10.1016/j.jacl.2015.08.006
29. Moriarty PM, Thompson PD, Cannon CP, et al.Efficacy and safety of alirocumab in statin-intolerant patients over 3 years: open-label treatment period of the ODYSSEY ALTERNATIVE trial. J Clin Lipidol 2020;14:88-97. DOI: https://doi.org/10.1016/j.jacl.2020.01.001
30. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372:1489-99. DOI: https://doi.org/10.1056/NEJMoa1501031
31. Bradley MN, Hong C, Chen M, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 2007;117:2337-46. DOI: https://doi.org/10.1172/JCI31909
32. Quinet EM, Basso MD, Halpern AR, et al. LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J Lipid Res 2009;50:2358-70. DOI: https://doi.org/10.1194/jlr.M900037-JLR200
33. Duval C, Müller M, Kersten S. PPARα and dyslipidemia. Biochim Biophys Acta 2007;1771:961-71. DOI: https://doi.org/10.1016/j.bbalip.2007.05.003
34. Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 2004;25:31-6. DOI: https://doi.org/10.1016/S0165-6147(04)00115-4
35. Balakumar P, Mahadevan N, Sambathkumar R. A contemporary overview of PPARα/γ dual agonists for the management of diabetic dyslipidemia. Curr Mol Pharmacol 2019;12:195-201. DOI: https://doi.org/10.2174/1874467212666190111165015
36. Hirschfield GM, eBowlus CL, Mayo MJ, et al. A phase 3 trial of seladelpar in primary biliary cholangitis. N Engl J Med 2024;390:783-94. DOI: https://doi.org/10.1056/NEJMoa2312100
37. Bays HE, Schwartz S, Littlejohn 3rd T, et al. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J Clin Endocrinol Metab 2011;96:2889-97. DOI: https://doi.org/10.1210/jc.2011-1061
38. Ahmad A, Li, LL, Morieri ML. et al. Precision prognostics for cardiovascular disease in Type 2 diabetes: a systematic review and meta-analysis. Commun Med (Lond) 2024;4:11. DOI: https://doi.org/10.21203/rs.3.rs-2929263/v1
39. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 2016;118:1808-29. DOI: https://doi.org/10.1161/CIRCRESAHA.116.306923
40. Calkin AC, Allen TJ. Diabetes mellitus-associated atherosclerosis: mechanisms involved and potential for pharmacological invention. Am J Cardiovasc Drugs 2006;6:15-40. DOI: https://doi.org/10.2165/00129784-200606010-00003
41. Azoulay L, Suissa S. Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies. Diabetes Care 2017;40:706-14. DOI: https://doi.org/10.2337/dc16-1943
42. Avogaro A, de Kreutzenberg SV, Morieri ML, et al. Glucose-lowering drugs with cardiovascular benefits as modifiers of critical elements of the human life history. Lancet Diabetes Endocrinol 2022;10:882-9. DOI: https://doi.org/10.1016/S2213-8587(22)00247-9
43. Xie Y, Choi T, Al-Aly Z. Mapping the effectiveness and risks of GLP-1 receptor agonists. Nat Med 2025;31:951-62. DOI: https://doi.org/10.1038/s41591-024-03412-w
44. Rivera FB, Cruz LLA, Magalong JV, et al. Cardiovascular and renal outcomes of glucagon-like peptide 1 receptor agonists among patients with and without type 2 diabetes mellitus: A meta-analysis of randomized placebo-controlled trials. Am J Prev Cardiol 2024;18:100679. DOI: https://doi.org/10.1016/j.ajpc.2024.100679
45. Mehdi SF, Pupasati S, Anwar MS, et al. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023;14:1148209. DOI: https://doi.org/10.3389/fimmu.2023.1148209
46. Lin YM, Wu JJ, Lee MC, et al. Comparative cardiovascular effectiveness of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors in atherosclerotic cardiovascular disease phenotypes: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother 2025;11:174-89. DOI: https://doi.org/10.1093/ehjcvp/pvae093
47. Chuang MH, Chen JY, Wang HY, et al. Clinical outcomes of tirzepatide or GLP-1 receptor agonists in individuals with type 2 diabetes. JAMA Netw Open 2024;7:e2427258. DOI: https://doi.org/10.1001/jamanetworkopen.2024.27258
48. Jastreboff AM, Kaplan LM, Frías JP, et al. Triple-hormone-receptor agonist retatrutide for obesity - A phase 2 trial. N Engl J Med 2023;389:514-26. DOI: https://doi.org/10.1056/NEJMoa2301972
49. Khera AV, Won HH, Peloso GM, et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. JAMA 2017;317:937-46. DOI: https://doi.org/10.1001/jama.2017.0972
50. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med 2009;361:2518-28. DOI: https://doi.org/10.1056/NEJMoa0902604
51. Nomura A, Emdin CA, Won HH, et al. Heterozygous ABCG5 gene deficiency and risk of coronary artery disease. Circ Genom Precis Med 2020;13:417-23. DOI: https://doi.org/10.1161/CIRCGEN.119.002871
52. Do R, Stitziel NO Won HH, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 2015;518:102-6. DOI: https://doi.org/10.1038/nature13917
53. Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol 2017;69:2054-63. DOI: https://doi.org/10.1016/j.jacc.2017.02.030
54. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014;371:22-31. DOI: https://doi.org/10.1056/NEJMoa1307095
55. Biswas M, Bendkhale SR, Deshpande SP, et al. Association between genetic polymorphisms of CYP2C9 and VKORC1 and safety and efficacy of warfarin: Results of a 5 years audit. Indian Heart J 2018;70:S13-S19. DOI: https://doi.org/10.1016/j.ihj.2018.02.005
56. Dean L. Warfarin therapy and VKORC1 and CYP genotype. In: Pratt VM, Scott SA, Pirmohamed M, et al., editors. Medical Genetics Summaries [Internet]. Bethesda, National Center for Biotechnology Information; 2012.
57. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 2013;369:2283-93. DOI: https://doi.org/10.1056/NEJMoa1310669
58. Yin T, Miyata T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 - Rationale and perspectives. Thromb Res 2007;120:1-10. DOI: https://doi.org/10.1016/j.thromres.2006.10.021
59. Schulz S, Rehm S, Schlitt A, et al. The interleukin 6 Protein level as well as a genetic variants, (rs1800795, rs1800797) Are associated with adverse cardiovascular outcomes within 10-years follow-up. Cells 2023;12:2722. DOI: https://doi.org/10.3390/cells12232722
60. Zhang M, Bai Y, Wang Y, et al. Cumulative evidence for associations between genetic variants in interleukin 6 receptor gene and human diseases and phenotypes. Front Immunol 2022;13:860703. DOI: https://doi.org/10.3389/fimmu.2022.860703
61. Mehta NN, deGoma E, Shapiro MD. IL-6 and cardiovascular risk: a narrative review. Curr Atheroscler Rep 2024;27:12. DOI: https://doi.org/10.1007/s11883-024-01259-7
62. Khan MS, Talha KM, Maqsood MH, et al. Interleukin-6 and cardiovascular events in healthy adults. JACC Adv 2024;3:101063. DOI: https://doi.org/10.1016/j.jacadv.2024.101063
63. Georgakis MK, Malik R, Burgess S, Dichgans M. Additive effects of genetic interleukin-6 signaling downregulation and low-density lipoprotein cholesterol lowering on cardiovascular disease: a 2×2 factorial Mendelian randomization analysis. J Am Heart Assoc 2022;11:e023277. DOI: https://doi.org/10.1161/JAHA.121.023277
64. Rosa M, Chignon A, Li Z,et al. A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. npj Genom Med 2019;4:23. DOI: https://doi.org/10.1038/s41525-019-0097-4
65. Posadas-Sánchez R, López-Uribe ÁR, Fragoso JM, Vargas-Alarcón G. Interleukin 6 polymorphisms are associated with cardiovascular risk factors in premature coronary artery disease patients and healthy controls of the GEA Mexican study. Exp Mol Pathol 2024;136:104886. DOI: https://doi.org/10.1016/j.yexmp.2024.104886
66. Benrick A, Jirholt P, Wernstedt I, et al. A non-conservative polymorphism in the IL-6 signal transducer (IL6ST)/gp130 is associated with myocardial infarction in a hypertensive population. Regul Pept 2008;46:189-96. DOI: https://doi.org/10.1016/j.regpep.2007.09.031
67. Cai T, Zhang Y, Ho YL, et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy: a phenome-wide association study. JAMA Cardiol 2018;3:849-57. DOI: https://doi.org/10.1001/jamacardio.2018.2287
68. Zorc R, Redmond C, Sylvester M, et al. A coding single nucleotide polymorphism in the interleukin-6 receptor enhances IL-6 signalling in CD4 T cells and predicts treatment response to tocilizumab in giant cell arteritis. Ann Rheum Dis 2025. Online ahead of Print. DOI: https://doi.org/10.1016/j.ard.2025.01.049
69. Sainz Comas L, Riera P, Moya P, et al. AB0129 IL-6R genetic variants as predictors of clinical response to tocilizumab in rheumatoid arthritis patients. Ann Rheum Dis 2021;80:1093. DOI: https://doi.org/10.1136/annrheumdis-2021-eular.2615
70. Feng Y, Ye D, Wang Z, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med 2022;9:818890. DOI: https://doi.org/10.3389/fcvm.2022.818890
71. Dederichs TS, Yerdenova A, Horstmann H, et al. Nonpreferential but detrimental accumulation of macrophages with clonal hematopoiesis-driver mutations in cardiovascular tissues-Brief Report. Arteriosc Thromb Vasc Biol 2024;44:690-7. DOI: https://doi.org/10.1161/ATVBAHA.123.320183
72. Bick AG, Pirruccello JP, Griffin GK, et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 2020;141:124-31. DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.044362
73. Nathan DI, et al. Clonal hematopoiesis and inflammation: A review of mechanisms and clinical implications. Crit Rev Oncol Hematol 2023;192:104187. DOI: https://doi.org/10.1016/j.critrevonc.2023.104187
74. Katkenov N, Mukhatayev Z, Kozhakhmetov S, et al. Systematic review on the role of IL-6 and IL-1β in Cardiovascular diseases. J Cardiovasc Dev Dis 2024;11:206. DOI: https://doi.org/10.3390/jcdd11070206
75. Abbate R, Sticchi E, Fatini C. Genetics of cardiovascular disease. Clin Cases Miner Bone Metab 2008;5:63-6. DOI: https://doi.org/10.1016/S0939-4753(08)70122-4
76. Tada H, Fujino N, Hayashi K, et al. Human genetics and its impact on cardiovascular disease. J Cardiol 2022;79:233-9. DOI: https://doi.org/10.1016/j.jjcc.2021.09.005
77. Hooper AJ, Tang Xl, Burnett JR. VERVE-101, a CRISPR base-editing therapy designed to permanently inactivate hepatic PCSK9 and reduce LDL-cholesterol. Expert Opin Investig Drugs 2024;33:753-6. DOI: https://doi.org/10.1080/13543784.2024.2369747
78. Chadwick AC, Evitt NH, Lv W, Musunuru K. Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3. Circulation 2018;137:975-7. DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.031335
79. Khera A, Lee R, Rohde E, Jayaram H, et al. An in vivo CRISPR base editing therapy to inactivate the ANGPTL3 gene: nomination of a development candidate for VERVE-201. Eur Heart J 2022;43:ehac544.3087. DOI: https://doi.org/10.1093/eurheartj/ehac544.3087
80. Rauch BJ, DeLoughery A, Sper R, et al. Single-AAV CRISPR editing of skeletal muscle in non-human primates with NanoCas, an ultracompact nuclease. bioRxiv 2025.01.29.635576. DOI: https://doi.org/10.1101/2025.01.29.635576

Supporting Agencies

Science foundation Ireland (SFI Pathway), UCD Ad Astra Fellowship

How to Cite



The subtle red line between combating and resolving inflammation in the cardiovascular disease, a “silent sniper”. (2025). Bleeding, Thrombosis and Vascular Biology, 4(2). https://doi.org/10.4081/btvb.2025.187