Plasma Fibrinogen Levels and All-Cause and Cause-specific Mortality in an Italian Adult

 Population: Results from the Moli-sani StudyRoberta Parisi ${ }^{1 *}$, Simona Costanzo ${ }^{2 *}$, Romy de Laat-Kremers ${ }^{3}$, Augusto Di Castelnuovo ${ }^{4}$, Amalia De Curtis ${ }^{2}$, Teresa Panzera ${ }^{2}$, Mariarosaria Persichillo ${ }^{2}$, Chiara Cerletti ${ }^{2}$, Giovanni de Gaetano ${ }^{2}$, Maria Benedetta Donati ${ }^{2}$, Licia Iacoviello ${ }^{2,5}$, Bas de Laat ${ }^{3,6}$; for the Moli-sani Study Investigators ${ }^{\#}$
${ }^{1}$ Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy;
${ }^{2}$ Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, IS, Italy;
${ }^{3}$ Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, the Netherlands;
${ }^{5}$ Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy;
${ }^{6}$ Department of Functional Coagulation, Synapse Research Institute, Maastricht, the Netherlands.
*These authors equally contributed to the manuscript.
\# Moli-sani Study Investigators are listed in the Supplementary Appendix S3.

Bleeding, Thrombosis, and Vascular Biology
Vol 2, No 1 (2023)
https://doi.org/10.4081/btvb.2023.46

Appendix S1: Blood Sample collection, storage, shipment and quality check.

Venous blood samples were previously obtained by venipuncture between 07:00 am and 09:00 am from participants who had fasted overnight and had refrained from smoking for at least 6 hours [1]. Citrated plasma samples for this study were initially stored in straws containing the sample code and barcode in liquid nitrogen in a dedicated biobank [2].

They were express-shipped in 3 batches on dry ice to Synapse Research Institute, Maastricht, the Netherlands on 27-10-2016, 08-05-2017 and 23-06-2017, where they were immediately stored at $80^{\circ} \mathrm{C}$. Levels of labile coagulation factors (FV, FVIII, and FIX) were determined in a subset of 144 samples from the first batch to confirm plasma sample quality. All coagulation factors measured were within the previously established reference ranges.

Appendix S2: description of the common risk factors assessment and additional references.

Definition of baseline characteristics

During the baseline visit, structured questionnaires to collect personal and clinical information, including socioeconomic status, physical activity, physiopathological medical history, risk factors for CVD and/or tumor, and drug use, and dietary habits were administered.

History of cardiovascular disease (including angina, myocardial infarction, revascularization procedures, cerebrovascular events and peripheral artery disease) and cancer were self-reported by participants during the baseline visit. All medical history reported were confirmed if participant: 1) reported the date of admission to the hospital; b) reported drug use for the specific disease; c) presented medical records of disease diagnosis [3]. We also collected participant reports of physician-made diagnosis of liver disorders.

The dataset of Moli-sani Study provides accurate information on the use (frequency, dose, compliance) of medication for any disease, collected during the recruitment. The questionnaire on drug use was directly linked to the Italian National drug index. Use of antithrombotic (antiplatelet,
heparin or vitamin k antagonists), oral contraceptives, anti-hypertensive, dyslipidaemia and diabetes medications and hormonal therapy were collected and dichotomized as no/yes.

Urban or rural environments were defined on the basis of the urbanization level as described by the European Institute of Statistics (EUROSTAT definition) and obtained by the tool 'Atlante Statistico dei Comuni' provided by the Italian National Institute of Statistics [4]. Educational attainment was based on the highest qualification attained and categorized as low (up to lower secondary school; approximately ≤ 8 years of study) or high (upper secondary education or higher, approximately ≥ 9 years of study). Household income was a three-level variable ($<40,000 ; \geq 40,000$ Euros/year), with missing values collapsed into a non-respondent category [5]. Physical activity was assessed by a structured questionnaire (24 questions on working time, leisure time, weekly walking and sport participation) and expressed as daily energy expenditure in metabolic equivalent task-hours (METhour) ${ }^{6}$. Physical activity was categorized in tertiles [T1-low (range): 19.10-39.66 MET-hour/day; T2-medium: 39.67-42.42 MET-hour/day and T3-high: 42.43-120.25 MET-hour/day] [6]. Subjects were classified as "non-smokers" if they had smoked less than 100 cigarettes in their lifetime, or they had never smoked cigarettes, as "current smokers" those who reported having smoked at least 100 cigarettes in their lifetime and still smoked or had quit smoking within the preceding year, and "former smokers" if they had smoked cigarettes in the past and had stopped smoking for at least one year.

Body mass index (BMI), calculated as $\mathrm{kg} / \mathrm{m}^{2}$ and then grouped into three categories as normal (≤ 25 $\mathrm{kg} / \mathrm{m}^{2}$), overweight ($>25<30 \mathrm{~kg} / \mathrm{m}^{2}$) or obese ($\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$).

D-dimer levels were measured on fresh citrated plasma by an automated latex-enhanced immunoassay (HemosIL-IL, Milan, Italy). Quality control was maintained using an internal laboratory standard in-house plasma pool. Inter and intra-day variability coefficients were 5.4% and 7.6%, respectively [7].

High sensitivity C-reactive protein (hs-CRP) was measured in fresh serum samples by a particleenhanced immunoturbidimetric assay (ILab 350, IL, Milan, Italy). Quality control for hs-CRP was
maintained using in-house serum pool and internal laboratory standard; inter-day coefficients of variability for CRP were 5.5% and 4.2%, respectively [5].

References

1. Iacoviello L, Bonanni A, Costanzo S, et al. The Moli-sani Project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives. Italian J Public Health. 2007;4:110-118
2. http://www.neuromed.it/biobanking-centre/
3. Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Interaction between Mediterranean diet and statins on mortality risk in patients with cardiovascular disease: Findings from the Molisani Study. Int J Cardiol. 2019;276:248-254. doi:10.1016/j.ijcard.2018.11.117
4. ISTAT: Istituto Nazionale di Statistica, Atlante statistico dei comuni. Edizione 2014. Available at: https://www.istat.it/it/archivio/113712 (Accessed September 2019)
5. Costanzo S, Mukamal KJ, Di Castelnuovo A, et al. Alcohol consumption and hospitalization burden in an adult Italian population: prospective results from the Moli-sani study. Addiction. 2019;114(4):636-650. doi:10.1111/add. 14490
6. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498-S504. doi:10.1097/00005768-200009001-00009
7. Di Castelnuovo A, de Curtis A, Costanzo S, et al. Association of D-dimer levels with allcause mortality in a healthy adult population: findings from the MOLI-SANI study.

Haematologica. 2013;98(9):1476-1480. doi:10.3324/haematol.2012.083410

Figure S1. Flow chart of selection of the studied participants from the Moli-sani Cohort.

Final study sample $=17,689$

Refusals 10,425

Exclusion of:

Subjects for whom fibrinogen was not available ($\mathrm{n}=3,808$)
Subjects with history of cardiovascular diseases ($\mathrm{n}=1,500$)
Subjects with cancer disease ($\mathrm{n}=831$)
Subjects with missing diagnosis for specific cause of death ($\mathrm{n}=28$)
Subjects with incomplete medical or dietary questionnaire ($\mathrm{n}=1,555$)

```
Missing data imputed:
Education (n=11)
Physical activity (n=158)
Smoking habit (n=12)
Body mass index ( }\textrm{n}=7\mathrm{ )
D-dimer ( }\textrm{n}=1,312\mathrm{ )
High sensitivity C-reactive protein (n=13)
Liver disease ( }\textrm{n}=258\mathrm{ )
Antihypertensive medication ( }\textrm{n}=112\mathrm{ )
Diabetes medication ( }\textrm{n}=206\mathrm{ )
Dyslipidaemia medications ( }\textrm{n}=127\mathrm{ )
Menopausal status (n=7)
Hormonal contraception (n=2)
Hormonal Replacement Therapy (n=1)
```

The groups of eliminated participants (out of the 24,325 recruited at baseline) are overlaid. The final study sample cannot be calculated as a subtraction of the sum of eliminated groups out of the recruited subjects at baseline.

Figure S2. Distribution of fibrinogen levels (means and standard error) in the final study cohort and in excluded individuals according to history of cancer or CVD

*p value $<0.0001 ;$ ** p value <0.01.

Table S1. Hazard ratio and $\mathbf{9 5 \%}$ CI for all-cause mortality according to baseline risk factors

Characteristics	Women		Men	
N	9,355		8,334	
	HR (95\% CI)	P value*	HR (95\% CI)	P value*
Age, years	1.13 (1.12-1.14)	$<.0001$	1.13 (1.12-1.13)	<. 0001
Residence Urban vs Rural	1.01 (0.81-1.24)	0.96	0.85 (0.72-1.00)	0.047
Education High school or higher vs Up to lower secondary school	0.84 (0.66-1.06)	0.14	0.72 (0.60-0.86)	0.002
Income				
≥ 40000 €/year vs <40000 €/year	0.79 (0.50-1.26)	0.33	0.72 (0.54-0.96)	0.025
Not responders vs <40000 €/year	1.00 (0.82-1.22)	0.99	1.12 (0.94-1.33)	0.20
$\mathbf{B M I}, \mathrm{kg} / \mathbf{m}^{2}$ (${ }^{\text {a }}$				
Overweight vs Normal weight	0.88 (0.68-1.15)	0.36	1.01 (0.82-1.25)	0.91
Obese vs Normal weight	1.26 (0.98-1.62)	0.076	1.21 (0.97-1.52)	0.087
Physical Activity				
Medium vs Low	0.82 (0.66-1.02)	0.074	0.93 (0.77-1.12)	0.43
High vs Low	0.86 (0.66-1.11)	0.25	0.81 (0.64-1.029	0.072
Smoking habit,				
Current Smoker vs Never Smoker	1.44 (1.08-1.93)	0.014	2.48 (1.98-3.10)	<. 0001
Former Smoker vs Never Smoker	0.65 (0.44-0.96)	0.032	1.28 (1.06-1.56)	0.013
Alcohol consumption (g/day)	1.00 (0.99-1.01)	0.80	1.00 (1.00-1.00)	0.47
D-dimer (ng/dL) (log)	1.11 (0.96-1.28)	0.16	1.18 (1.06-1.32)	0.0035
hs-CRP (mg/L) (log)	1.18 (1.07-1.30)	0.0011	1.25 (1.15-1.35)	<. 0001
Antithrombotic medication	1.94 (1.46-2.57)	<. 0001	1.50 (1.17-1.93)	0.0013
Liver disease	1.87 (1.28-2.75)	0.0013	1.32 (0.95-1.82)	0.096
Antihypertension medications	1.27 (1.03-1.56)	0.022	1.00 (0.85-1.17)	0.96
Diabetes medications	2.08 (1.52-2.84)	<. 0001	1.60 (1.27-2.01)	<. 0001
Hypercholesterolemia medications	0.91 (0.67-1.23)	0.53	0.87 (0.63-1.21)	0.41
ONLY IN WOMEN				
Hormonal contraception	0.94 (0.64-1.37)	0.74		
Menopausal status	0.51 (0.33-0.78)	0.0021		
Hormonal Replacement Therapy	0.68 (0.41-1.12)	0.13		

Abbreviation: CI: confidence interval and HR: Hazard ratio. *P value age adjusted

Figure S3. Distribution of plasma fibrinogen in women $(\mathbf{N}=\mathbf{9 , 3 5 5})$ and men $(\mathbf{N}=\mathbf{8}, 334)$ of the Moli-sani cohort

Table S2. Hazard Ratios ($\mathbf{9 5 \%}$ confidence interval) for all-cause and cause-specific mortality according to plasma fibrinogen quintiles, stratified by sex and in case complete analyses (women $\mathbf{N}=8,944$, men $\mathrm{N}=8,006$)

Death rate (95\% CI)	8.0	4.9	8.4	11.9	20.9		12.8	12.3	16.4	19.9	37.7	
/10,000 Person Years	(4.9-13.0)	(2.7-9.2)	(5.2-13.5)	(8.0-17.8)	(15.4-28.4)		(8.5-19.3)	(8.1-18.7)	(11.4-23.6)	(14.3-27.7)	(30.0-48.1)	
HR Crude	0.96	$\begin{gathered} 0.59 \\ (0.27-1.28) \end{gathered}$	Ref.	$\begin{gathered} 1.42 \\ (0.76-2.65) \end{gathered}$	2.52	<. 0001	0.78	$\begin{gathered} 0.75 \\ (0.43-1.31) \end{gathered}$	Ref.	$\begin{gathered} 1.22 \\ (0.75-1.99) \end{gathered}$	$\begin{gathered} 2.32 \\ (1.50-3.59) \end{gathered}$	<. 0001
HR_{1} (95\% CI)	$\begin{gathered} (0.48-1.89) \\ 2.34 \\ (1.18-4.66) \end{gathered}$	$\begin{gathered} (0.27-1.28) \\ 0.79 \\ (0.36-1.73) \end{gathered}$	Ref.	$\begin{gathered} (0 . / 6-2.65) \\ 1.01 \\ (0.54-1.89) \end{gathered}$	$\begin{gathered} (1.43-4.44) \\ 1.40 \\ (0.79-2.47) \end{gathered}$	0.030	$\begin{gathered} (0.45-1.3) \\ 1.23 \\ (0.71-2.13) \end{gathered}$	$\begin{gathered} (0.43-1.31) \\ 0.95 \\ (0.55-1.66) \end{gathered}$	Ref.	$\begin{gathered} (0.75-1.99) \\ 1.01 \\ (0.62-1.66) \end{gathered}$	$\begin{gathered} (1.50-3.59) \\ 1.45 \\ (0.93-2.25) \end{gathered}$	0.26
$\begin{aligned} & \mathrm{HR}_{2} \\ & (95 \% \mathrm{CI}) \end{aligned}$	$\begin{gathered} 2.15 \\ (1.07-4.32) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.35-1.68) \end{gathered}$	Ref.	$\begin{gathered} 0.99 \\ (0.53-1.85) \end{gathered}$	$\begin{gathered} 1.39 \\ (0.78-2.46) \end{gathered}$	0.052	$\begin{gathered} 1.22 \\ (0.70-2.13) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.55-1.68) \end{gathered}$	Ref.	$\begin{gathered} 0.99 \\ (0.61-1.63) \end{gathered}$	$\begin{gathered} 1.46 \\ (0.94-2.27) \end{gathered}$	0.24

Model 1: adjusted for age; Model 2 women: model 1 plus BMI, education, income, menopausal status, antihypertensive and diabetes medications; Model 2 men: model 1 plus BMI, education, smoking habit, physical activity, and diabetes medications. Abbreviations: BMI: body mass index; CI: confidence interval and HR: Hazard ratio.

Table S3. Hazard Ratios ($\mathbf{9 5 \%}$ confidence interval) for all-cause and cause-specific mortality according to plasma fibrinogen quintiles, stratified by sex and excluding early deaths (follow up time ≥ 2 years; women $\mathbf{N}=\mathbf{9 , 3 2 9}$ men $\mathbf{N}=\mathbf{8 , 2 8 1}$)

	WomenQuintiles of Fibrinogen						MenQuintiles of Fibrinogen					
	Q1	Q2	Q3	Q4	Q5	$\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$	Q1	Q2	Q3	Q4	Q5	P value
All-cause mortality												
\mathbf{N} events/ \mathbf{N} total	46/1,868	42/1,859	53/1,869	96/1,869	156/1,864		57/1,660	92/1,655	98/1,654	131/1,658	208/1,654	
Death rate (95\% CI) /10,000 Person Years	$\begin{gathered} 21.9 \\ (16.4-29.3) \end{gathered}$	$\begin{gathered} 19.9 \\ (14.7-26.9) \end{gathered}$	$\begin{gathered} 25.1 \\ (19.2-32.8) \end{gathered}$	$\begin{gathered} 45.5 \\ (37.2-55.5) \end{gathered}$	$\begin{gathered} 76.0 \\ \text { (65.0-88.9) } \end{gathered}$		$\begin{gathered} 30.6 \\ (23.6-39.7) \end{gathered}$	$\begin{gathered} 49.8 \\ (40.6-61.1) \end{gathered}$	$\begin{gathered} 53.4 \\ (43.8-65.1) \end{gathered}$	$\begin{gathered} 71.6 \\ (60.4-85.0) \end{gathered}$	$\begin{gathered} 115.6 \\ (100.9-132.4) \end{gathered}$	
$\begin{aligned} & \mathrm{HR}_{2} \\ & (\mathbf{9 5 \%} \% \mathrm{CI}) \end{aligned}$	$\begin{gathered} 1.94 \\ (1.29-2.92) \end{gathered}$	$\begin{gathered} 1.10 \\ (0.73-1.65) \end{gathered}$	Ref.	$\begin{gathered} 1.30 \\ (0.92-1.83) \end{gathered}$	$\begin{gathered} 1.69 \\ (1.23-2.33) \end{gathered}$	0.0009	$\begin{gathered} 0.91 \\ (0.65-1.28) \end{gathered}$	$\begin{gathered} 1.24 \\ (0.92-1.65) \end{gathered}$	Ref.	$\begin{gathered} 1.11 \\ (0.85-1.45) \end{gathered}$	$\begin{gathered} 1.30 \\ (1.02-1.66) \end{gathered}$	0.086
Cardiovascular mortality												
Death rate (95\% CI)	5.3	6.2	7.6	19.9	32.2		6.5	14.6	14.7	26.8	40.6	
/10,000 Person Years	(2.9-9.5)	(3.6-10.6)	(4.6-12.4)	(14.7-26.9)	(25.3-40.9)		(3.7-11.4)	(10.0-21.3)	(10.1-21.4)	(20.3-35.5)	(32.3-51.0)	
$\begin{aligned} & \mathrm{HR}_{2} \\ & (\mathbf{9 5 \%} \% \mathrm{CI}) \end{aligned}$	$\begin{gathered} 2.12 \\ (0.98-4.61) \end{gathered}$	$\begin{gathered} 1.22 \\ (0.59-2.55) \end{gathered}$	Ref.	$\begin{gathered} 1.61 \\ (0.89-2.90) \end{gathered}$	$\begin{gathered} 1.92 \\ (1.10-3.35) \end{gathered}$	0.13	$\begin{gathered} 0.73 \\ (0.36-1.50) \end{gathered}$	$\begin{gathered} 1.39 \\ (0.80-2.43) \end{gathered}$	Ref.	$\begin{gathered} 1.48 \\ (0.91-2.43) \end{gathered}$	$\begin{gathered} 1.64 \\ (1.04-2.60) \end{gathered}$	0.058
Cancer mortality												
Death rate (95\% CI)	8.6 $(5.413 .6)$	9.00	9.0 $(5.714 .1)$	14.7	22.4 (16.8.29.9)		11.8 (7.8-18.0)	23.8 $(17.732 .0)$	23.4	26.8	38.4	
/10,000 Person Years	(5.4-13.6)	(5.7-14.1)	(5.7-14.1)	(10.3-20.9)	(16.8-29.9)		(7.8-18.0)	(17.7-32.0)	(17.4-31.6)	(20.3-35.5)	(30.3-48.6)	
$\begin{aligned} & \mathrm{HR}_{2} \\ & (95 \% \mathrm{CI}) \end{aligned}$	$\begin{gathered} 1.48 \\ (0.76-2.88) \end{gathered}$	$\begin{gathered} 1.21 \\ (0.64-2.30) \end{gathered}$	Ref.	$\begin{gathered} 1.28 \\ (0.72-2.90) \end{gathered}$	$\begin{gathered} 1.68 \\ (0.97-2.90) \end{gathered}$	0.39	$\begin{gathered} 0.79 \\ (0.47-1.32) \end{gathered}$	$\begin{gathered} 1.29 \\ (0.84-1.98) \end{gathered}$	Ref.	$\begin{gathered} 0.95 \\ (0.63-1.44) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.68-1.48) \end{gathered}$	0.40
Other-cause mortality												
\mathbf{N} events/ \mathbf{N} total	17/1,868	10/1,859	18/1,869	23/1,869	44/1,864		23/1,660	21/1,655	28/1,654	33/1,658	66/1,654	
Death rate (95\% CI)	8.1	4.7	8.5	10.9	21.4		12.4	11.4	15.3	18.0	36.7	
/10,000 Person Years	(5.0-13.1)	(2.6-8.8)	(5.4-13.5)	(7.2-16.4)	(16.0-28.8)		(8.2-18.6)	(7.4-17.4)	(10.5-22.1)	(12.8-25.4)	(28.8-46.7)	
$\begin{aligned} & \mathrm{HR}_{2} \\ & (95 \% \mathrm{CI}) \end{aligned}$	$\begin{gathered} 2.38 \\ (1.20-4.72) \end{gathered}$	$\begin{gathered} 0.80 \\ (0.36-1.74) \end{gathered}$	Ref.	$\begin{gathered} 0.97 \\ (0.52-1.82) \end{gathered}$	$\begin{gathered} 1.41 \\ (0.80-2.51) \end{gathered}$	0.021	$\begin{gathered} 1.24 \\ (0.70-2.19) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.56-1.77) \end{gathered}$	Ref.	$\begin{gathered} 0.99 \\ (0.59-1.64) \end{gathered}$	$\begin{gathered} 1.42 \\ (0.90-2.25) \end{gathered}$	0.35

Model 1: adjusted for age; Model 2 women: model 1 plus BMI, education, income, menopausal status, antihypertensive and diabetes medications; Model 2 men: model 1 plus BMI, education, smoking habit, physical activity, and diabetes medications.
Abbreviations: BMI: body mass index; CI: confidence interval and HR: Hazard ratio.

Table S4. Hazard Ratios ($\mathbf{9 5 \%}$ confidence interval) for all-cause mortality according to plasma fibrinogen quintiles, stratified by menopausal status in Moli-sani women ($\mathbf{N}=\mathbf{9 , 3 5 5 \text {) }}$

	Quintiles of Fibrinogen					P value for heterogeneity
	Q1	Q2	Q3	Q4	Q5	
Pre-Menopause						
N events/ \mathbf{N} total	8/1,293	8/1,040	5/836	9/649	10/458	
Death rate (95\% CI) /10,000 Person Years	$\begin{gathered} 5.5 \\ (2.7-10.9) \end{gathered}$	$\begin{gathered} 6.7 \\ (3.4-13.4) \end{gathered}$	$\begin{gathered} 5.2 \\ (2.2-12.6) \end{gathered}$	$\begin{gathered} 12.1 \\ (6.3-23.3) \end{gathered}$	$\begin{gathered} 19.4 \\ (10.4-36.1) \end{gathered}$	
$\begin{aligned} & \text { HR } \\ & (95 \% \mathrm{CI}) \end{aligned}$	$\begin{gathered} 1.61 \\ (0.58-4.49) \end{gathered}$	$\begin{gathered} 0.49 \\ (0.13-1.90) \end{gathered}$	ref	$\begin{gathered} 1.53 \\ (0.58-4.05) \end{gathered}$	$\begin{gathered} 2.22 \\ (0.86-5.73) \end{gathered}$	0.16
Post-Menopause						
Death rate (95\% CI)	63.6	39.9	45.0	70.6	99.6	
/10,000 Person Years	(46.6-86.7)	(28.9-55.1)	(34.3-59.0)	(57.8-86.2)	(85.0-116.7)	
$\begin{aligned} & \text { HR } \\ & (95 \% \mathrm{CI}) \\ & \hline \end{aligned}$	$\begin{gathered} 2.15 \\ (1.36-3.41) \\ \hline \end{gathered}$	$\begin{gathered} 1.09 \\ (0.63-1.63) \\ \hline \end{gathered}$	ref	$\begin{gathered} 0.95 \\ (0.67-1.35) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (1.03-1.92) \\ \hline \end{gathered}$	0.0004

Model: adjusted for age, body mass index, education, income, antihypertensive and diabetes medications.
Abbreviations: CI: confidence interval and HR: Hazard ratio.

Figure S4. Dose response curve for all-cause mortality according to plasma fibrinogen levels stratified by menopausal status (panel A: premenopause, panel B: post-menopause) in Moli-sani women ($\mathbf{N}=\mathbf{9 , 3 5 5}$)

The dose-response curves were obtained from multivariable model adjusted for age, body mass index, education, income, antihypertensive and diabetes medications, by using the first imputed dataset. The other imputed datasets are similar and thus omitted. The reference value of the dose response association is the median value of fibrinogen distribution in women (median $3.09 \mathrm{~g} / \mathrm{L}$).
Abbreviations: CI: confidence interval and HR: Hazard ratio.

ICD-9* Diagnosis code	System involved or type of disease	Frequency (\%)	
		Women	
$460-519$	Respiratory	26.5	Men
$520-579$	Gastro-intestinal	14.5	17.8
$800-999$	Injury and poisoning	12.8	16.9
$320-359$	Nervous	12.0	8.4
$240-279$	Endocrine, nutritional, metabolic and immunity	6.8	7.9

*ICD-9 International Classification of Diseases 9th revision.

Figure S5. Dose-response curve for all-cause and cause specific mortality according to plasma fibrinogen levels stratified by age classes (<65 years and ≥ 65 years) in the Moli-sani cohort ($\mathrm{N}=\mathbf{1 7 , 6 8 9 \text {) }}$

The dose-response curves were obtained from multivariable model adjusted for sex, age, body mass index, smoking habit, income, physical activity, liver disease, antihypertensive and diabetes medications, by using the first imputed dataset. The other imputed datasets are similar and thus omitted. The reference value of the dose response association is the median value of fibrinogen distribution (median $2.96 \mathrm{~g} / \mathrm{L}$).
Abbreviations: CI: confidence interval and HR: Hazard ratio.

Table S6. Assessment of the potential effect of inflammatory and hemostasis biomarkers on the studied outcomes; HR (95%) according to plasma fibrinogen quintiles, stratified by sex in the Moli-sani cohort (women $\mathbf{N}=\mathbf{9 , 3 5 5}$, men $\mathbf{N}=\mathbf{8 , 3 3 4}$)

	WomenQuintiles of fibrinogen						$\xrightarrow{\text { Men }}$ Quintiles of fibrinogen					
	Q1	Q2	Q3	Q4	Q5	P value	Q1	Q2	Q3	Q4	Q5	$\begin{gathered} \mathbf{P} \\ \text { value } \end{gathered}$
All-cause mortality												
HR (95\% CI)	$\begin{gathered} 1.98 \\ (1.30-3.01) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.57-1.41) \end{gathered}$	Ref.	$\begin{gathered} 1.00 \\ (0.72-1.39) \end{gathered}$	$\begin{gathered} 1.45 \\ (1.08-1.96) \end{gathered}$	0.0001	$\begin{gathered} 0.94 \\ (0.71-1.24) \end{gathered}$	$\begin{gathered} 1.07 \\ (0.83-1.38) \end{gathered}$	Ref.	$\begin{gathered} 1.24 \\ (0.97-1.58) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.03-1.67) \end{gathered}$	0.052
HR ($\mathbf{9 5 \%} \mathbf{~ C I}$) + hs CRP	$\begin{gathered} 2.04 \\ (1.34-3.11) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.58-1.44) \end{gathered}$	Ref.	$\begin{gathered} 0.98 \\ (0.71-1.37) \end{gathered}$	$\begin{gathered} 1.37 \\ (1.01-1.87) \end{gathered}$	0.0003	$\begin{gathered} 1.01 \\ (0.76-1.34) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.86-1.44) \end{gathered}$	Ref.	$\begin{gathered} 1.18 \\ (0.92-1.52) \end{gathered}$	$\begin{gathered} 1.14 \\ (0.89-1.48) \end{gathered}$	0.66
HR (95\% CI) + D.dimer*	$\begin{gathered} 1.98 \\ (1.31-3.02) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.57-1.41) \end{gathered}$	Ref.	$\begin{gathered} 1.00 \\ (0.72-1.39) \end{gathered}$	$\begin{gathered} 1.44 \\ (1.07-1.95) \end{gathered}$	0.0002	$\begin{gathered} 0.96 \\ (0.73-1.27) \end{gathered}$	$\begin{gathered} 1.09 \\ (0.84-1.41) \end{gathered}$	Ref.	$\begin{gathered} 1.25 \\ (0.98-1.60) \end{gathered}$	$\begin{gathered} 1.29 \\ (1.02-1.65) \end{gathered}$	0.16
$\begin{aligned} \text { HR }(95 \% \text { CI }) & + \text { hs CRP } \\ & \text { + D.dimer* } \end{aligned}$	$\begin{gathered} 2.04 \\ (1.34-3.11) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.58-1.43) \end{gathered}$	Ref.	$\begin{gathered} 0.98 \\ (0.71-1.37) \end{gathered}$	$\begin{gathered} 1.37 \\ (1.01-1.86) \end{gathered}$	0.0003	$\begin{gathered} 1.02 \\ (0.77-1.36) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.87-1.46) \end{gathered}$	Ref.	$\begin{gathered} 1.20 \\ (0.94-1.54) \end{gathered}$	$\begin{gathered} 1.14 \\ (0.88-1.48) \end{gathered}$	0.63
Cardiovascular mortality												
HR (95\% CI)	$\begin{gathered} 1.87 \\ (0.80-4.36) \end{gathered}$	$\begin{gathered} 1.68 \\ (0.81-3.46) \end{gathered}$	Ref.	$\begin{gathered} 1.10 \\ (0.61-1.98) \end{gathered}$	$\begin{gathered} 1.80 \\ (1.06-3.04) \end{gathered}$	0.056	$\begin{gathered} 0.74 \\ (0.43-1.26) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.65-1.62) \end{gathered}$	Ref.	$\begin{gathered} 1.28 \\ (0.83-1.96) \end{gathered}$	$\begin{gathered} 1.33 \\ (0.88-2.02) \end{gathered}$	0.14
HR ($\mathbf{9 5 \%} \mathbf{~ C I) ~ + ~ h s ~ C R P ~}$	$\begin{gathered} 1.88 \\ (0.81-4.41) \end{gathered}$	$\begin{gathered} 1.69 \\ (0.82-3.49) \end{gathered}$	Ref.	$\begin{gathered} 1.09 \\ (0.61-1.97) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.03-3.01) \end{gathered}$	0.070	$\begin{gathered} 0.77 \\ (0.45-1.31) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.66-1.66) \end{gathered}$	Ref.	$\begin{gathered} 1.25 \\ (0.81-1.92) \end{gathered}$	$\begin{gathered} 1.23 \\ (0.79-1.93) \end{gathered}$	0.41
HR (95\% CI) + D.dimer*	$\begin{gathered} 1.88 \\ (0.80-4.38) \end{gathered}$	$\begin{gathered} 1.68 \\ (0.82-3.47) \end{gathered}$	Ref.	$\begin{gathered} 1.10 \\ (0.61-1.98) \end{gathered}$	$\begin{gathered} 1.79 \\ (1.06-3.03) \end{gathered}$	0.063	$\begin{gathered} 0.76 \\ (0.45-1.30) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.66-1.66) \end{gathered}$	Ref.	$\begin{gathered} 1.31 \\ (0.85-2.01) \end{gathered}$	$\begin{gathered} 1.32 \\ (0.87-2.00) \end{gathered}$	0.17
$\begin{aligned} \text { HR }(95 \% \text { CI }) & + \text { hs CRP } \\ & \text { + D.dimer* } \end{aligned}$	$\begin{gathered} 1.89 \\ (0.81-4.42) \end{gathered}$	$\begin{gathered} 1.69 \\ (0.82-3.49) \end{gathered}$	Ref.	$\begin{gathered} 1.10 \\ (0.61-1.98) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.03-3.01) \end{gathered}$	0.081	$\begin{gathered} 0.78 \\ (0.46-1.34) \end{gathered}$	$\begin{gathered} 1.07 \\ (0.67-1.69) \end{gathered}$	Ref.	$\begin{gathered} 1.28 \\ (0.83-1.97) \end{gathered}$	$\begin{gathered} 1.24 \\ (0.79-1.93) \end{gathered}$	0.40
Cancer mortality												
HR (95\% CI)	$\begin{gathered} 1.57 \\ (0.83-2.97) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.16-0.93) \end{gathered}$	Ref.	$\begin{gathered} 1.03 \\ (0.62-1.72) \end{gathered}$	$\begin{gathered} 1.17 \\ (0.72-1.90) \end{gathered}$	0.053	$\begin{gathered} 0.69 \\ (0.44-1.08) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.68-1.46) \end{gathered}$	Ref.	$\begin{gathered} 0.97 \\ (0.66-1.43) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.65-1.41) \end{gathered}$	0.48
HR (95% CI) + hs CRP	$\begin{gathered} 1.57 \\ (0.83-2.99) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.16-0.93) \end{gathered}$	Ref.	$\begin{gathered} 1.03 \\ (0.61-1.72) \end{gathered}$	$\begin{gathered} 1.17 \\ (0.71-1.92) \end{gathered}$	0.053	$\begin{gathered} 0.78 \\ (0.50-1.22) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.72-1.56) \end{gathered}$	Ref.	$\begin{gathered} 0.91 \\ (0.62-1.35) \end{gathered}$	$\begin{gathered} 0.78 \\ (0.52-1.178) \end{gathered}$	0.48
HR (95\% CI) + D.dimer*	$\begin{gathered} 1.57 \\ (0.83-2.97) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.16-0.93) \end{gathered}$	Ref.	$\begin{gathered} 1.03 \\ (0.62-1.72) \end{gathered}$	$\begin{gathered} 1.18 \\ (0.73-1.91) \end{gathered}$	0.052	$\begin{gathered} 0.70 \\ (0.45-1.10) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.69-1.48) \end{gathered}$	Ref.	$\begin{gathered} 0.98 \\ (0.67-1.45) \end{gathered}$	$\begin{gathered} 0.95 \\ (0.65-1.39) \end{gathered}$	0.53
$\begin{aligned} \text { HR (} 95 \% \text { CI) }) & + \text { hs CRP } \\ & \text { + D.dimer* } \end{aligned}$	$\begin{gathered} 1.58 \\ (0.83-3.00) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.16-0.93) \end{gathered}$	Ref.	$\begin{gathered} 1.03 \\ (0.62-1.72) \end{gathered}$	$\begin{gathered} 1.17 \\ (0.71-1.94) \end{gathered}$	0.053	$\begin{gathered} 0.79 \\ (0.50-1.24) \end{gathered}$	$\begin{gathered} 1.07 \\ (0.73-1.57) \end{gathered}$	Ref.	$\begin{gathered} 0.92 \\ (0.62-1.36) \end{gathered}$	$\begin{gathered} 0.78 \\ (0.52-1.17) \end{gathered}$	0.48
Other-cause mortality 1.74												
HR (95\% CI)	$\begin{gathered} 2.60 \\ (1.24-5.48) \end{gathered}$	$\begin{gathered} 1.07 \\ (0.47-2.43) \end{gathered}$	Ref.	$\begin{gathered} 0.88 \\ (0.46-1.66) \end{gathered}$	$\begin{gathered} 1.43 \\ (0.81-2.51) \end{gathered}$	0.022	$\begin{gathered} 1.74 \\ (1.04-2.91) \end{gathered}$	$\begin{gathered} 1.28 \\ (0.75-2.18) \end{gathered}$	Ref.	$\begin{gathered} 1.73 \\ (1.05-2.85) \end{gathered}$	$\begin{gathered} 2.00 \\ (1.23-3.25) \end{gathered}$	0.042

HR (95\% CI) + hs CRP	$\begin{gathered} 2.84 \\ (1.34-6.00) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.50-2.57) \end{gathered}$	Ref.	$\begin{gathered} 0.84 \\ (0.44-1.60) \end{gathered}$	$\begin{gathered} 1.20 \\ (0.67-2.16) \end{gathered}$	0.016	$\begin{gathered} 1.84 \\ (1.10-3.10) \end{gathered}$	$\begin{gathered} 1.32 \\ (0.77-2.24) \end{gathered}$	Ref.	$\begin{gathered} 1.66 \\ (1.01-2.75) \end{gathered}$	$\begin{gathered} 1.79 \\ (1.08-2.98) \end{gathered}$	0.10
HR (95\% CI) + D.dimer*	$\begin{gathered} 2.69 \\ (1.27-5.69) \end{gathered}$	$\begin{gathered} 1.08 \\ (0.48-2.46) \end{gathered}$	Ref.	$\begin{gathered} 0.90 \\ (0.48-1.71) \end{gathered}$	$\begin{gathered} 1.42 \\ (0.81-2.50) \end{gathered}$	0.045	$\begin{gathered} 1.77 \\ (1.06-2.97) \end{gathered}$	$\begin{gathered} 1.30 \\ (0.76-2.20) \end{gathered}$	Ref.	$\begin{gathered} 1.75 \\ (1.06-2.88) \end{gathered}$	$\begin{gathered} 1.98 \\ (1.22-3.22) \end{gathered}$	0.044
$\begin{array}{r} \text { HR (95\% CI) + hs CRP } \\ \text { + D.dimer* } \end{array}$	$\begin{gathered} 2.89 \\ (1.36-6.12) \\ \hline \end{gathered}$	$\begin{gathered} 1.13 \\ (0.50-2.56) \\ \hline \end{gathered}$	Ref.	$\begin{gathered} 0.87 \\ (0.46-1.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.21 \\ (0.67-2.17) \\ \hline \end{gathered}$	0.033	$\begin{gathered} 1.86 \\ (1.11-3.13) \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ (0.78-2.26) \\ \hline \end{gathered}$	Ref.	$\begin{gathered} 1.68 \\ (1.02-2.79) \\ \hline \end{gathered}$	$\begin{gathered} 1.79 \\ (1.07-2.98) \\ \hline \end{gathered}$	0.10

*D-dimer missing by design for $\mathrm{N}=1,312$ subjects. Model 1: adjusted for age; Model $\mathbf{2}$ women: model 1 plus BMI, education, income, menopausal status, antihypertensive and diabetes medications; Model $\mathbf{2}$ men: model 1 plus BMI, education, smoking habit, physical activity, and diabetes medications. Abbreviations: BMI: body mass index; CI: confidence interval and HR: Hazard ratio.

Appendix S3: Moli-sani Study Investigators

The enrolment phase of the Moli-sani Study was conducted at the Research Laboratories of the Catholic University in Campobasso (Italy), the follow up of the Moli-sani cohort is being conducted at the Department of Epidemiology and Prevention of the IRCCS Neuromed, Pozzilli, Italy.

Steering Committee: Licia Iacoviello*o (Chairperson), Giovanni de Gaetano* and Maria Benedetta Donati*.

Scientific Secretariat: Marialaura Bonaccio*, Americo Bonanni*, Chiara Cerletti*, Simona Costanzo*, Amalia De Curtis*, Augusto Di Castelnuovo§, Alessandro Gialluisi*o, Francesco Gianfagna ${ }^{\circ}$ §, Mariarosaria Persichillo*, Teresa Di Prospero* (Secretary).

Safety and Ethical Committee: Jos Vermylen (Catholic University, Leuven, Belgio)
(Chairperson), Renzo Pegoraro (Pontificia Accademia per la Vita, Roma, Italy), Antonio Spagnolo (Catholic University, Roma, Italy).

External Event Adjudicating Committee: Deodato Assanelli (Brescia, Italy), Livia Rago (Campobasso, Italy).

Baseline and Follow-up Data Management: Simona Costanzo* (Coordinator), Marco Olivieri (Campobasso, Italy), Teresa Panzera*.

Data Analysis: Augusto Di Castelnuovo§ (Coordinator), Marialaura Bonaccio*, Simona Costanzo*, Simona Esposito*, Alessandro Gialluisi*。, Francesco Gianfagnå ${ }^{\circ}$, Sabatino Orlandi*, Emilia Ruggiero*, Alfonsina Tirozzi*.

Biobank, Molecular and Genetic Laboratory: Amalia De Curtis* (Coordinator), Sara Magnacca§, Fabrizia Noro*, Alfonsina Tirozzi*.

Recruitment Staff: Mariarosaria Persichillo* (Coordinator), Francesca Bracone*, Teresa Panzera*.
Communication and Press Office: Americo Bonanni*.
Regional Institutions: Direzione Generale per la Salute - Regione Molise; Azienda Sanitaria Regionale del Molise (ASReM, Italy); Agenzia Regionale per la Protezione Ambientale del Molise (ARPA Molise, Italy); Molise Dati Spa (Campobasso, Italy); Offices of vital statistics of the Molise region.

Hospitals: Presidi Ospedalieri ASReM: Ospedale A. Cardarelli - Campobasso, Ospedale F. Veneziale - Isernia, Ospedale San Timoteo - Termoli (CB), Ospedale Ss. Rosario - Venafro (IS), Ospedale Vietri - Larino (CB), Ospedale San Francesco Caracciolo - Agnone (IS); Casa di Cura Villa Maria - Campobasso; Ospedale Gemelli Molise - Campobasso; IRCCS Neuromed - Pozzilli (IS).
*Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
${ }^{\circ}$ Department of Medicine and Surgery, University of Insubria, Varese, Italy
§Mediterranea Cardiocentro, Napoli, Italy
Moli-sani Study Past Investigators are available at https://www.moli-sani.org/?pageid=173

